Reg. No.:....

Name:....

Sixth Semester B.Tech. Degree Examination, March 2015 (2008 Scheme)

Branch: ELECTRICAL AND ELECTRONICS

08.605 : Power System Engineering - II

(Special Supplementary)

Time: 3 Hours

Max. Marks: 100

Instruction: Answer all questions from Part A and one full question from each Module of Part B.

PART-A

- 1. List the various types of faults that occur in power system.
- 2. For faults on transmission lines a 3 phase fault is more severe than other faults. Why?
- 3. Describe the process of current chopping.
- 4. Explain
 - Restriking voltage
 - 2) Recovery voltage.
- 5. Distinguish between primary and back up protection.
- 6. Discuss the advantages of SF₆ circuit breakers over oil circuit breakers.
 - 7. Explain the principle of operation of HVDC circuit breaker.
 - 8. Give the block schematic diagram of over current relay.
 - 9. Explain the differential current protection of a bus-zone.
 - 10. What are the abnormal conditions in a large alternator against which protection is necessary? (10×4= 40 Marks)

PART-B

Answer any one full question from each Module.

Module - I

- 11. a) Derive an expression to find the fault current when a double line to ground fault occurs on the terminals of an unloaded alternator with neutral solidly grounded. Draw the sequence networks for the case.
- 10
- b) A set of unbalanced line currents in a 3ϕ , 4 wire system is as follows

$$I_a = -j6A$$

$$I_{b} = -8 + j5$$

$$I_c = 7A$$

Determine the zero, +ve and -ve sequence components of the current.

10

OR

12. a) What are current limiting reactors? Explain the different types of current limiting reactors used in power system.

10

b) A generating station having n section busbars each rated at XKVA with p% reactance is connected on the tie bars system through busbar reactances of q%. Determine the short circuit kVA if a 3-phase fault takes place on one section. Determine the short circuit kVA when n is very large.

10

Module - II

13. a) Explain with neat sketches the construction and working of a typical oil circuit breaker.

10

- b) In a 132 kV system, the reactance per phase upto the location of the circuit breaker is 5Ω and capacitance to earth is $0.03\,\mu F$. Calculate
 - a) the maximum value of restriking voltage.
 - b) the maximum value of RRRV.
 - c) frequency of transient oscillation.

10

OR

14.	W	rite short notes on :	
	i) Percentage differential relays	10
	ii) H.R.C. Cambridge fuse.	10
		Module – III	
15.	a)	Describe the protection schemes used for protection of stator of generators	. 10
	b)	Write notes on Bucholz's relay.	10
		OR	
16.	a)	Describe the Merz-Price circulating current system for the protection of	4.0
		transformers.	10
	b)	Explain microprocessor based protective relays.	10
		MEMORIAL CSI INSTITUTE OF	

TRIVANDRUM-11

TRIVANDRUM-11

TRIVANDRUM-11

TRIVANDRUM-11